Có: \(5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9=5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}=5\cdot2^{30}\cdot3^{18}-3^{20}\cdot2^{29}\)
\(=3^{18}\cdot2^{29}\cdot\left(5\cdot2-3^2\right)=3^{18}\cdot2^{29}\)
Lại có: \(5\cdot2^{10}\cdot6^{19}-7\cdot2^{29}\cdot27^6=5\cdot2^{10}\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}=5\cdot2^{29}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}\)
\(=2^{19}\cdot3^{18}\cdot\left(5\cdot3-7\right)=2^{19}\cdot3^{18}\cdot2^3=2^{22}\cdot3^{18}\)
Vậy \(\frac{3^{18}\cdot2^{29}}{2^{22}\cdot3^{18}}=2^7=128\)
Ta có:\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)=\(\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)=\(\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)=\(\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}\)=\(\frac{2\left(10-3^2\right)}{15-14}\)=2