Thực hiện phép tính :
a, \(^{6x^n.\left(x^2-1\right)+2x.\left(3x^{n-1}+1\right)}\)
b, \(3x^{n-2}.\left(x^{n+2}y^{n+2}\right)+y^{n+2}.\left(3x^{n-2}-y^{n-2}\right)\)
c, \(4x^{n+1}-3.4^n\)
d, \(6^2.3^8.2^8-6^5.\left(6^{5-1}\right)\)
Rút gọn các biểu thức sau :
a) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)
b) \(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
c) \(x^{n-3}\left(x-y\right)+y\left(x^{n-3}+x^{n-3}y^{n-1}\right)\)
\(\left(-\dfrac{1}{2}x^5y^7z^{n-3}+3x^{n-2}y^8\right):\left(-3x^4y^{n-2}\right)\)
Tìm số tự nhiên n để phép chia trên là phép chia hết
________________
Mình ra \(n\in\left\{6,7,8,9\right\}\) đúng k ạ?
\(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
\(3x^{n-2}\cdot\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\cdot\left(3x^{n-2}-y^{n-2}\right)\)=?
thu gọn:
\(3x^{n-2}.\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
\(3xn^{n-2}.\left(x^{n+2}-y^{n+2}\right)+y^{n+2}.\left(3x^{n-2}-y^{n-2}\right)\)
1. Làm tính chia :
\(\left(x^3+8y^3\right):\left(x+2y\right)\)
2. Tìm số tự nhiên n để phép chia sau là phép chia hết :
a) \(\left(5x^3-3x^2+x\right):3x^n\)
b) \(\left(12x^3y^7+9x^4y^5-3x^5y^8\right):3x^{n+1}y^{n+3}\)
Thực hiện phép tính:\(x^{n-3}y^3\left(x^{n+3}-x^3y^{n-3}\right)+x^3y^{n-3}\left(x^{n-3}y^3-y^{n+3}\right)\)