\(\frac{2}{1\times4}+\frac{2}{4\times7}+\frac{2}{7\times10}+...+\frac{2}{37\times40}\)
\(=\frac{2}{3}\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{37\times40}\right)\)
\(=\frac{2}{3}\times\left(\frac{4-1}{1\times4}+\frac{7-4}{4\times7}+\frac{10-7}{7\times10}+...+\frac{40-37}{37\times40}\right)\)
\(=\frac{2}{3}\times\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
\(=\frac{2}{3}\times\left(1-\frac{1}{40}\right)=\frac{13}{20}\)