2A = 3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
3B = 4B - B = (4 + 42 + ... + 451) - (1 + 4 + 42 + ... + 450)
3B = 451 - 1
B = \(\frac{4^{51}-1}{3}\)
2A = 3A - A = ( 3 + 32 + 33 + ... + 3101 ) - ( 1 + 3 + 32 + 33 + ... + 3100 )
2A = 3101 - 1
A =\(3^{101}-1\): 2
3B = 4B - B = ( 4 + 42 + ... + 451) - ( 1 + 4 + 42 +...+ 450 )
3B = 451 - 1
B = 451 - 1 : 3