Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3.a Tính diện tích toàn phần của hình trụ đã cho
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của hình trụ đã cho
Một hình trụ bị cắt bởi một mặt phẳng đi qua trục của nó cho ta thiết diện là một hình vuông cạnh bằng 3a. Tính diện tích toàn phần của khối trụ đó.
Diện tích toàn phần của hình trụ có thiết diện qua trục là hình vuông cạnh a bằng
A. 2 πa 2
B. 3 πa 2 2
C. πa 2
D. πa 2 2
Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của khối trụ.
A. a 2 π 3 2
B. 27 a 2 π 2
C. a 2 π 3
D. 13 a 2 π 2
Cho hình trụ có thiết diện qua trục là một hình vuông và diện tích toàn phần bằng 64 πa 2 . Tính bán kính đáy của hình trụ.
Cho hình trụ có diện tích toàn phần 6π a 2 và thiết diện của hình trụ cắt bởi mặt phẳng (P) đi qua trục là một hình vuông. Chiều cao của hình trụ là:
A. 3a/4
B. a
C. 3a/2
D. 2a
Cho hình trụ có thiết diện đi qua trục là một hình vuông có cạnh bằng 4a . Diện tích xung quanh của hình trụ là
Thiết diện qua trục của một hình trụ là một hình vuông có cạnh bằng 2a. Tính theo a thể tích khối trụ đó.