Một khối cầu có thể tích bằng 32 π 3 . Bán kính R của khối cầu đó là
Cho một mặt cầu có diện tích là S, thể tích khối cầu đó là V. Tính bán kính R của mặt cầu.
A. R = 3 V S
B. R = S 3 V
C. R = 4 V S
D. R = V 3 S
Cho khối cầu có thể tích là 36 π (cm3). Bán kính R của khối cầu là ?
A. R = 6 (cm)
B. R = 3 (cm)
C. R = 3 2 (cm)
D. R = 6 (cm)
Một khối trụ có trục là một đường kính của mặt cầu (S) bán kính R, các đường tròn đáy đều thuộc mặt cầu, biết hình trụ đó có bán kính đường tròn đáy và đường sinh bằng nhau. Tính tỉ số thể tích V 1 của hình trụ đó với V 2 là thể tích mặt cầu.
I. Trắc nghiệm ( 6 điểm)
Cho một mặt cầu có diện tích là S, thể tích khối cầu đó là V. Tính bán kính R của mặt cầu.
A. R = 3 V S
B. R = S 3 V
C. R = 4 V S
D. R = V 3 S
Cho một mặt cầu có diện tích S, thể tích khối cầu đó là V. Bán kính R của mặt cầu là:
A. R = 4V/S B. R = S/3V
C. R = 3V/S D. R = V/3S
Cho khối cầu tâm I, bán kính R không đổi. Một khối nón có chiều cao h và bán kính đáy r, nội tiếp khối cầu. Tính chiều cao h theo bán kính R sao cho khối nón có thể tích lớn nhất.
Thể tích của khối cầu có bán kính R là
Một khối trụ có đường kính đáy bằng chiều cao và nội tiếp trong mặt cầu bán kính R thì thể tích của khối trụ là:
A. 2 π R 3
B. π R 3 2 2
C. π R 3 2 6
D. 2 3 π R 3