\(abc+ab=bccb\)
\(\Rightarrow ax100+bx10+c+ax10+b=bx1001+cx110\)
Bớt cả 2 vế đi \(bx11+c\), ta có:
\(ax101=bx990+cx109\)
\(b\le1\) vì nếu b>1 thì \(ax101>1980\Rightarrow a>10\)(vô lý vì a là chữ số)
*TH1: b =0
\(\Rightarrow ax101=cx109\)
\(\Rightarrow\frac{a}{c}=\frac{109}{101}\) là phân số tối giản, cho nên loại
*TH2: b=1
\(\Rightarrow ax101=990+cx109\)
\(\Rightarrow ax101-909=81+cx109\)
\(\Rightarrow\left(a-9\right)x101=cx109+81>0\)
Do đó a > 9 (vô lý)
Vậy không có a,b,c thỏa mãn.