Ta có:
\(\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}\)
\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\left(tcdtsbn\right)\)=2
\(\Rightarrow y+z+t=2x;z+t+x=2y;\)
\(t+x+y=2z;x+y+z=2t\)
Tu do de CM x=y=z=t
Khi do
\(A=1+1+1+1=4\)
Xet \(x+y+z+t=0\)
\(\Rightarrow A=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=-1-1-1-1=-4\)
Xet \(x+y+z+t\ne0\)
\(\Rightarrow\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}=\frac{3\left(x+y+z+t\right)}{x+y+z+t}=3\)
\(\Rightarrow x=y=z=t\ne0\)
\(\Rightarrow A=4\)