Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
Số nghiệm thuộc khoảng - 4 π 3 ; π 2 của phương trình cos ( π + x ) + 3 sin x = sin 3 x - 3 π 2 là
A. 6.
B. 2.
C. 4.
D. 3.
Tập nghiệm của phương trình sin(πx) = cos(π/3+πx) là
A. {π/12+kπ,k∈Z}
B. {1/12+k,k∈Z}
C. {π/2+kπ,k∈Z}
D. {1/2+kπ,k∈Z}
Tổng các nghiệm của phương trình: sin 2 ( 2 x - π / 4 ) - 3 cos ( 3 π / 4 - 2 x ) + 2 = 0 ( 1 ) trong khoảng (0;2π) là:
A. 7π/8
B. 3π/8
C. π
D. 7π/4
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
Tìm nghiệm thuộc - π 3 ; - π của phương trình
3 sinx = cos 3 π 2 - 2 x
A. 0
B. 1
C. 2
D. 3
Số nghiệm thuộc khoảng [ - 4 π 3 ; π 2 ) của phương trình cos ( π + x ) + 3 sin x = sin 3 x - 3 π 2
A. 6.
B. 2.
C. 4.
D. 3.
Tìm số nghiệm thuộc [ - 3 π 2 ; - π ) của phương trình
3 sinx = cos 3 π 2 - 2 x
A. 0.
B. 1.
C. 2.
D. 3