Trong tất cả các giá trị của tham số mm để hàm số y=\dfrac{1}{3} x^{3} +mx^{2} -mx-my=31x3+mx2−mx−m đồng biến trên \mathbb{R},R, giá trị nhỏ nhất của mm là
Tập tất cả các giá trị của tham số m để hàm số y = ln(cosx + 2) – mx + 1 đồng biến trên R là
A. ( - ∞ ; - 1 3 ]
B. ( - ∞ ; - 1 3 ]
C. [ - 1 3 ; + ∞ )
D. [ - 1 3 ; + ∞ )
Cho X là tập hợp tất cả các giá trị nguyên thuộc đoạn [ - 5 ; 5 ] của tham số m để hàm số y = x 3 - 3 x 2 + m x - 2 đồng biến trên khoảng 2 ; + ∞ .
Số phần tử của X là
A. 3
B. 6
C. 2
D. 5
Cho hàm số \(f\left(x\right)=\frac{1}{5}m^2x^5-\frac{1}{3}mx^3+10x^2-\left(m^2-m-20\right)x\)Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số đồng biến trên R. Tổng giá trị của tất cả các phần tử thuộc S bằng :
A. 3/2
B. -2
C. 5/2
D. 1/2
Tìm tất cả giá trị thực của tham số m để hàm số y = x 3 3 + ( m + 1 ) x 2 + ( 3 m + 1 ) x + 2 đồng biến trên R
A.
B.
C.
D.
Tìm tất cả các giá trị thực của tham số m để hàm số y=(m-3)x-(2m+1)cosx nghịch biến trên R.
A.
B. không có m
C.
D.
Tìm tất cả các giá trị của tham số m để hàm số y = 1 3 x 3 + ( m - 1 ) x 2 + ( 2 m - 3 ) x - 2 3 đồng biến trên
A. .
B. .
C. .
D.
Tập hợp S tất cả các giá trị của tham số thực m để hàm số: y = 1 3 x 3 - ( m + 1 ) x 2 + ( m 2 + 2 m ) x - 3 nghịch biến trên khoảng (-1;1) là
A. S = ∅
B. S = [0;1]
C. S = [-1;0]
D. S = {-1}
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 3 + 2 ( m - 1 ) x 2 + ( m - 1 ) x + 5 đồng biến trên ℝ
A. m ∈ ( - ∞ ; 1 ]
B. m ∈ 1 ; 7 4
C. m ∈ - ∞ ; 1 ∪ 7 4 ; + ∞
D. m ∈ 1 ; 7 4