a) \(\frac{1-sina}{cosa}=\frac{cosa}{1+sina}\)
b) \(\frac{sina}{1+cosa}+\frac{1+cosa}{sina}=\frac{2}{sina}\)
c) \(\frac{cosa}{1+sina}+\frac{cosa}{1-sina}=\frac{2}{cosa}\)
Giải bpt
a) \(\frac{3}{\sqrt{x-2}-1}\ge\frac{5}{\sqrt{x-2}-3}\)
b) \(x\sqrt{x-3}-\frac{\sqrt{x-3}}{2-x}\le0\)
c) \(\frac{2\sqrt{x-1}-4}{\sqrt{4-x^2}-1}\ge2-\sqrt{x-1}\)
chứng minh các đẳng thức sau :
a)\(\frac{cos\left(a-b\right)}{cos\left(a+b\right)}=\frac{cota.cotb+1}{cota.cotb-1}\)
b)\(2\left(sin^6a+cos^6a\right)+1=3\left(sin^4a+cos^4a\right)\)
c)\(\frac{tana-tanb}{cotb-cota}=tanatanb\)
d)\(\left(cotx+tanx\right)^2-\left(cotx-tanx\right)^2=4\)
e)\(\frac{sin^3a+cos^3a}{sina+cosa}=1-sinacosa\)
1 . Cho \(\tan\alpha+\cot\alpha=m\) . Tính
a, \(\tan^2\alpha+\cot^2\alpha\)
b, \(\tan^4\alpha+\cot^4\alpha\)
c, \(\tan^6\alpha+\cot^6\alpha\)
d, C/m : \(\left|m\right|\ge2\)
chứng minh rằng: Tam giác ABC là tam giác đều khi:
\(\frac{b^3+c^3-a^2}{b+c-a}=a^2\) và \(\) a=2b.cosC
Cho \(A\left(-\frac{15}{2};2\right)\), B(12;15), C(0;3)
Tìm tâm I của đường tròn nội tiếp tam giác ABC
Rút gọn biểu thức sau
\(\left(\cot+\tan\right)^2-\left(\cot-\tan\right)^2\) Với ( sin.cos khác 0)
rút gọn biểu thức \(\frac{sin^2a-tan^2a}{cos^2a-cot^2a}\)
Giải bất phương trình
1) \(\frac{x^4-1}{x^2+3x}+x^2\ge1\)
2) \(\left(x^4-5x^2+4\right)\left(\frac{x-2}{x}-3\right)\le0\)
3) \(\left(\frac{4}{x}-\frac{2}{x-1}\right)\left(\frac{x^2+1}{x}-2\right)\le0\)
4) \(\left(\sqrt{x^3-4x}-\sqrt{15}\right)\sqrt{\frac{1+x}{x}-2}\le0\)