a, áp dụng hệ thức lượng cho các tam giác vuông AHB,AHC, ABC có các đường cao ta có:\(BE=\frac{BH^2}{AB};CF=\frac{HC^2}{AC};BE.CF=\frac{BH^2.HC^2}{AB.AC}=\frac{AH^4}{AB.AC}\); \(BC=\frac{AB^2}{AH}\)
\(BC.CE.CF=\frac{AB^2}{AH}.\frac{AH^4}{AB.AC}=\frac{AH^3.AB}{AC}=AH^3.\frac{AB}{AC}\).
tam giác này người ta k cho cân => AB/AC không =1 đc => BC.BE.CF khác AH^3
\(EB=\frac{BH^2}{AB};FC=\frac{HC^2}{AC}\Rightarrow\frac{EB}{FC}=\frac{BH^2.AC}{AB.HC^2}\). VỚI TAM GIÁC ABC TA CÓ: \(BH=\frac{AB^2}{BC}\Rightarrow BH^2=\frac{AB^4}{BC}\Leftrightarrow HC^2=\frac{AC^4}{BC}\) => \(\frac{EB}{FC}=\frac{\frac{AB^4}{BC}.AC}{AB.\frac{AC^4}{BC}}=\frac{AB^4.AC.BC}{AB.AC^4.BC}=\frac{AB^3}{AC^3}\)
B) C/M TỨ GIÁC AEHF LÀ HÌNH CHỮ NHẬT => EF=AH(T/C) => EF LỚN NHẤT <=> AH LỚN NHẤT
TỪ A KẺ TRUNG TUYẾN AM. \(AH\le AM\) (ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN) => AH LỚN NHẤT KHI AH=AM <=> AH=1/2 BC=1/2a<=> EF LỚN NHẤT =1/2a (AM LÀ TRUNG TUYẾN CỦA TAM GIÁC VUÔNG => = 1/2 CẠNH HUYỀN)
TỪ CÁC CÔNG THỨC ĐÃ LẬP Ở TRÊN, S AEHF=AE.AF=\(\frac{AH^2}{AB}.\frac{AH^2}{AC}=\frac{AH^4}{AB.AC}=\frac{AH^4}{\sqrt{BH.BC.HC.BC}}=\frac{AH^4}{BC\sqrt{AH^2}}=\frac{AH^3}{BC}\)
CHỈ LÀM ĐC ĐẾN ĐÂY THÔI :-/ DÙ SAO CŨNG ĐC ÍT NHIỀU :)