Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC. Kẻ đường cao AH của tam giác ABC. Biết BC=20cm, AH/AC= 3/4
1. Tính AB và AC
2. Đường tròn đường kính AH cắt (O), AB, AC lần lượt tại M,D,E. DE cắt BC tại K. Chứng minh: A,M,K thẳng hàng
3. Chứng minh: B, D, E, C cùng thuộc một đường tròn
cho tam giác ABC, AB<AC nội tiếp đường tròn (O), đường kính BC, AH là đường cao, D thuộc cung nhỏ AC, BD cắt AH tại E. Chứng minh DEHC nội tiếp
Cho tam giác ABC nội tiếp đường tròn tâm O,đường kính BC , đường cao AH
1> Cho BH = 9,HC=16.Tính AH,AB,AC và bán kính đường tròn nội tiếp tam giác ABC
2>Vẽ đường tròn tâm I,đường kính AH. Đường tròn tâm I cắt AB ở D,cắt AC ở E và cắt đường tròn tâm O ở K ,K khác A.
Chứng minh AEHD là Hình Chữ Nhật và D,I,E thẳng hàng
3> Chứng minh 0A vuông góc với DE
4>AK cắt BC ở F.Chứng minh F,D,E thẳng hàng
Cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC. Kẻ đuwofng cao AH của tam giác ABC. Đường tròn đường kính AH cắt đường tròn tâm O, AB, AC lần lượt tại M,D,E. Đường thẳng DE cắt BC tại K.
a)Chứng minh 3 điểm A,M,K thẳng hàng
b) Chứng minh 4 điểm B,D,E,C cùng nằm trên một đường tròn
cho tam giác abc có ba góc nhọn (ab<ac) nội tiếp đường tròn o .Các đường cao bd ce của tam giác cắt nhau tại h a) chúng minh bedc nội tiếp b)chứng minh ae.ab=ad.ac c)đường tròn đường kính ah cắt đường tròn (o,r) tại f. chứng minh de af bc đồng quy tại 1 điểm MÌNH CẦN GẤP PHẦN C
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
Cho tam giác ABC nhọn, Vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E, CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp đường tròn.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 600, AH = 4cm.
c) Gọi AH cắt BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh rằng hai tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Cho tam giác ABC nhọn, Vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E, CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp đường tròn.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 600, AH = 4cm.
c) Gọi AH cắt BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh rằng hai tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
cho tam giác nhọn ABC có AB < AC. Đường tròn O đường kính BC cắt AB, AC lần lượt tại E và D. BD cắt CE tại H. ED cắt BC tại S. AH cắt O tại K. Chứng minh: SK là tiếp tuyến O