1. Tam giác ABC, G là trọng tâm tam giác và M bất kì trong tam giác, Đường thẳng qua M,G cắt BC,CA,AB tại A';B';C'. Chứng minh:
\(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
Giúp mình !!!!!!!!
1. Tam giác ABC với D,E,F lần lượt thuộc cạnh BC,CA,AB sao cho AD,BE,CF đồng quy tại M. chứng minh \(\frac{DM}{AD}+\frac{FM}{CF}+\frac{EM}{BE}=1\)
2. Tam giác ABC với M tùy ý nằm trong tam giác. Đường thẳng đi qua M và trọng tâm G của tam giác cắt BC,CA,AB lần lượt tại A',B',C'. chứng minh: \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
3. Tam giác nhọn ABC, phân giác AD. M,N lần lượt là hình chiếu của D trên AC,AB, P là giao điểm BM, CN. chứng minh AP vuông góc BC
Cho tam giác ABC, G là trọng tâm, M là một điểm nằm trong tam giác \(\left(M\ne G\right)\) . Đường thẳng MG cắt các đường thẳng AB, BC, CA lần lượt tại C', A', B'. Chứng minh rằng: \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
từ M tùy ý trong tam giác ABC, các đường thẳng MA, MB, MC lần lượt cắt BC, CA, AB tại E,F,D.
CMR: \(\frac{ME}{AE}+\frac{MF}{BF}+\frac{MD}{CD}=1\)
Cho tam giác ABC vuông ở A.Lấy M thuộc AB. Trên tia đối tia CA lấy N sao cho MB = CN, đường trung trực MN cắt đường phân giác góc A tại O. C/m : \(\frac{1}{AB^2}+\frac{1}{OB^2}=\frac{4}{BC^2}\)
Cho tam giác ABC. Lấy M trên cạnh AB, điểm P trên cạnh AC, sao cho MP cắt BC tại N.
CMR:\(\frac{AM}{MB}\)x \(\frac{BN}{NC}\)x \(\frac{CP}{PA}\)=1
Cho tam giác ABC. Hai điểm phân biệt M, N thay đổi sao cho MA/NA=MB/NB=MB/NC khác 1 . Chứng minh rằng đường thẳng MN đi qua một điểm cố định.
Cho tam giác ABC ở miền trong tam giác có điểm M sao cho các đường thẳng AM, BM, CM cắt các cạnh AB, BC, CA tại các điểm C1, A1, B1 thỏa: \(\frac{AM}{A_1M}+\frac{BM}{B_1M}+\frac{CM}{C_1M}=6\). Chứng minh M là trọng tâm tam giác ABC
Cho M là điểm nằm trong tam giác ABC. Các đường thẳng AM,BM,CM cắt BC,CA,AB lần lượt tại A1,B1,C1
Tìm vị trí của M để \(P=\frac{MA}{MA_1}.\frac{MB}{MB_1}.\frac{MC}{MC_1}\) nhỏ nhất