Cho tam giác ABC (AB < AC). M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Kẻ PH vuông góc với AB, kẻ PK vuông góc với AC.
1, Chứng minh : PB = PC và BH = CK.
2, Chứng minh ba điểm H,M,K thẳng hàng.
3, Gọi O là giao điểm của PA và HK. Chứng minh : \(OA^2+OP^2+OH^2+OK^2=PA^2\)
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC. a) Chứng minh: PB = PC và BH = CK. b) Chứng minh: Ba điểm H, M, K thẳng hàng. c) Gọi O là giao điểm của PA và HK.Chứng minh: 2 2 2 2 2 OA OP OH OK PA .
Cho tam giác ABC (AB < AC). M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Kẻ PH vuông góc với AB, kẻ PK vuông góc với AC.
1, Chứng minh : PB = PC và BH = CK.
2, Chứng minh ba điểm H,M,K thẳng hàng.
3, Gọi O là giao điểm của PA và HK. Chứng minh : OA^2+OP^2+OH^2+OK^2=PA^
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC. a) Chứng minh: PB = PC và BH = CK. b) Chứng minh: Ba điểm H, M, K thẳng hàng. c) Gọi O là giao điểm của PA và HK.Chứng minh:OA^2+OP^2+OH^2+OK^2=PA^2.
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC. a) Chứng minh: PB = PC và BH = CK. b) Chứng minh: Ba điểm H, M, K thẳng hàng. c) Gọi O là giao điểm của PA và HK.Chứng minh:OA^2+OP^2+OH^2+OK^2=PA^2.
Cho tam giác ABC có AB=AC. Tia phân giác Am của góc BAC cắt BC tại D .Gọi H, K tương ứng là hình chiếu của D xuống AB,AC.
1, CM AD vuông góc với BC và D là trung điểm của cạnh BC
2, CM DH=DK và AD là đường trung trực của đoạn thẳng HK
3, Giả sử góc BAC =4góc B.Tính ^ BAD
Cho tam giác ABC nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC, H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Gọi K là giao điểm của FH và AI. CM 3 điểm B,O,K thẳng hàngCho tam giác ABC nhọn, AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại O. Gọi F là hình chiếu của O trên BC, H là hình chiếu của O trên AC. Lấy điểm I trên đoạn FC sao cho FI = AH. Gọi K là giao điểm của FH và AI. CM 3 điểm B,O,K thẳng hàng
Cho tam giác ABC vuông tại B có góc A = 60 độ, M là trung điểm của AC, đường trung trực của AC cắt BC tại E
a. CM góc BAE = góc EAC và AE là trung trực của BM
b. CM BE < MC
c. gọi h là hình chiếu của C trên AE. CM 3 đường thẳng AB, EM, CH đồng qui
d. gọi K là điểm đồng qui của AB, EM, CH. CM: H là trug điểm của CK