Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc vói BC tại H. Gọi E và F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh AH2 - AE.AB.
b) Chứng minh Δ A F E ~ Δ A B C ;
c) Lấy M đối xứng với A qua E, tia MH cắt cạnh AC tại N. Chứng minh A B H ^ = A N H ^ và EF//HN.
d) Gọi O là trung điểm của BC; AO giao với HN tại K. Cho biết A C B ^ = 30 ° , hãy tính tỉ số A K A N S H C A
Cho tam giác ABC cân tại A. Kẻ đường cao AH. Từ H kẻ HM, HN, vuông với AB, AC.
a)CM: MH= NH
B)CM: MN// BC. Suy ra BMNC là hình thang vuông
Cho Δ ABC vuông tại A, biết AB = 6cm, BC = 10cm, đường cao AH.
a) CM: Δ ABC ~ Δ HBA
b) Tính tỉ số diện tích: HBA/ABC
c) Đường phân giác góc ABC cắt cạnh AC tại D. Tính DC.
d) Gọi I là giao điểm của AH và BD, K là hình chiếu của điểm C trên đường thẳng BD. CM: góc BIA = góc BAK.
Cho Δ ABC vuông tại A, biết AB = 6cm, BC = 10cm, đường cao AH.
a) CM: Δ ABC ~ Δ HBA
b) Tính tỉ số diện tích: ΔHBAΔABCΔHBAΔABC
c) Đường phân giác góc ABC cắt cạnh AC tại D. Tính DC.
d) Gọi I là giao điểm của AH và BD, K là hình chiếu của điểm C trên đường thẳng BD. CM: góc BIA = góc BAK.
Cho Δ ABC có 3 đường cao AK,BM,CN cắt nhau tại H.
a) C/m: Δ ANH ~ Δ CKH, suy ra HA.HK = HN.HC
b) Δ HNK ~ Δ HAC và CN là phân giác của góc MNK
c) C/m: \(\dfrac{HK}{AK}+\dfrac{HM}{BM}+\dfrac{HN}{CN}=1\)
cho tam giác ABC nhọn, trực tâm H. AH, BH, CH cắt BC, AC, AB lần lượt tại M,N,P. CM AM/HM+BN/HN+CP/HP>=9
Cho ABC vuông tại A, có AB = 6cm, AC = 8 cm, đường cao AH.
a) Chứng minh HBA đồng dạng với ABC.
b) Tính độ dài BC và AH ?
c) HM và HN là phân giác của ABH và ACH.
C/minh: MAN vuông cân.
Cho tam giác ABC vuông tại a đường cao AH h thuộc BC biết AB = 15 cm AC = 20 cm .a)tính độ dài đoạn thẳng bc ah.b) kẻ HM vuông góc với AB HN vuông góc với AC chứng minh tam giác ahb đồng dạng với tam giác ACB .C)gọi I là trung điểm của BC k là giao điểm của AE và MN chứng minh AD vuông góc MN tại k.
cho tam giác ABCvuông tại A , đường cao AH .
a) chứng minh Δ ABC đòng dang với ΔHAC
b) chứng minh AC^2 = CH . BC ,
c) trên tia đối của AB lấy CD sao cho CD>AB , vẽ AK vuông góc với DC tại K , gọi M là giao điểm của DH và KB . chứng minh Δ DMK đòng dạng với Δ BMH