\(x+y=1\ge2\sqrt{xy}\Leftrightarrow xy\le\frac{1}{4}\)
\(A=8\left(x^4+y^4\right)+\frac{1}{xy}\ge16x^2y^2+\frac{1}{xy}=16x^2y^2+\frac{1}{4xy}+\frac{1}{4xy}+\frac{1}{2xy}\ge3\sqrt[3]{16x^2y^2.\frac{1}{4xy}.\frac{1}{4xy}}+\frac{1}{2.\frac{1}{4}}=5\)
Dâu ' = ' xảy ra khi x =y = 1/2