ta có:(vế phải)2\(\le3\left(\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\right)\)
cần chứng minh:
(vế trái)2/3\(\ge\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\)
\(\Leftrightarrow\frac{x}{y+z}\left(\frac{x^3+\frac{1}{3}}{y+z}-x^2\right)+...\ge0\)
\(\Leftrightarrow\frac{x^2}{y+z}\left(x-y\right)\left(x-z\right)+\frac{y^2}{z+x}\left(y-x\right)\left(y-z\right)+\frac{z^2}{x+y}\left(z-x\right)\left(z-y\right)\ge0\)
bđt luôn đúng vì là bđt schur mở rộng