Ta có: Δ MNP ∼ Δ ABC ⇒ MN/AB = NP/BC = MP/AC
Chọn đáp án A.
Ta có: Δ MNP ∼ Δ ABC ⇒ MN/AB = NP/BC = MP/AC
Chọn đáp án A.
Cho Δ ABC và Δ MNP có A ^ = M ^ = 90 0 , AB/MN = BC/NP thì?
A. Δ ABC ∼ Δ PMN
B. Δ ABC ∼ Δ NMP
C. Δ ABC ∼ Δ MNP
D. Δ ABC ∼ Δ MPN
Cho tam giác ABC , MNP lần lượt là trung điểm của AB,AC,BC . C/m MN // BC , NP//AB , MP //AC
Bài 6:Cho tam giác MNP có MN = 12cm, NP = 18cm, MP = 20cm. Lấy A, B, C lần lượt là trung điểm của MN, NP, MP. Tính độdài các đoạn AB, BC, AC
+cac ban giup minh ho nha .
cho tam giác ABC có AB=5cm,AC=10cm,BC=10cm. M,N,P lần lượt là trung điểm của AB,AC,BC.
a) chứng minh MN, MP, NP là đường trung bình của tam giác ABC.
b) Tính MN, MP, NP
Cho tam giác ABC có độ dài các cạnh A B = 4 c m , A C = 5 c m v à B C = 6 c m và tam giác MNP có độ dài các cạnh M N = 3 c m , M P = 2 c m , N P = 2 , 5 c m thì:
A. S A B C S M N P = 4
B. S M N P S A B C = 1 2
C. S M N P S A B C = 1 3
Cho tam giác ABC có AB = 4cm, BC =5cm, AC = 6cm; tam giác MNP có MN = 2cm, NP = 3CM, MP= 2,5cm. Cách viết nào sau đây đúng quy ước về đỉnh
A. Δ A B C ∽ Δ M N P ;
B. Δ A B C ∽ Δ M P N ;
C. Δ A B C ∽ Δ N P M ;
D. Δ A B C ∽ Δ N M P .
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm và tam giác MNP vuông tại M có MN=9cm, NP=15cm.
a) tính cạnh BC và MP
b) tam giác ABC có đồng dạng tam giác MNP không? Vì sao?
Cho tam giác ABC , M là trung điểm của AB , N là trung điểm của AC. Trên tia đối tia MN , lấy P sao cho NP=MN. Nối P với C. Chứng minh:
a) MP=BC (câu này mình giải rồi )
b) CP//AB
c) MP=BC
Cho △ABC, trên nửa mp bờ là AC ko chứa đ' B lấy đ' D bất kì . Gọi M , N, P , Q lần lượt là trùn đ' của AB, BC, CD, AD. Cm:
a, MN//PQ, MQ // NP
b, MN + NP + QP + MQ = AC + BD
B1:
Cho tam giác MNP nhọn, MN<MP. LẤy D thuộc cạnh MN, E thuộc cạnh MP sao cho DE//NP. Cho biết MN=4cm, ND=1cm,MP=5cm. Tính EP.
B2:
Cho tam giác MNP nhọn, MN<MP. Lấy D thuộc cạnh MN, E thuộc cạnh MP sao cho DE//NP. Cho biết MN=5cm, ND=2cm, MP=10cm. Tính EP.
B3:
Cho tam giác MNP nhọn, MN<MD. Lấy D thộc cạnh MN, E thuộc cạnh MP sao cho DE//NP. Cho biết MN=6cm, ND=3cm, MP=4cm. Tính EP.
B4:
Cho tam giác PQR nhọn, PQ<PR. Lấy M thuộc cạnh PQ, N thuộc cạnh PR sao cho MN//QR. Cho biết PQ=8cm, NQ=6cm, NP=3cm. TÍnh PR.
B5:
Cho xAy<90 độ. Trên tia Ax lấy theo thứ tự 2 điểm A,B. Từ B và C kẻ 2 đường thẳng // với nhau và cắt Ay ở D và E. Từ E vẽ đoạn thẳng // với CD cắt Ax ở F.
a, So sánh \frac{AB}{AC} và\frac{NB}{BC}
b,CMR:\ AC^2=AB.AF