Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Công Minh Nghĩa

Sử dụng BĐT Bunhiacopxki giải bài toán sau:

Cho các số thực dượng a,b,c thỏa mãn a+b+c=3. CMR: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{c^2}}+\sqrt{2c^2+\frac{7}{a^2}}\ge9\)

Mong mọi người giúp đỡ!

Nguyễn Việt Lâm
7 tháng 4 2022 lúc 13:22

\(\left(2+7\right)\left(2a^2+\dfrac{7}{b^2}\right)\ge\left(2a+\dfrac{7}{b}\right)^2\)

\(\Rightarrow\sqrt{2a^2+\dfrac{7}{b^2}}\ge\dfrac{1}{3}\left(2a+\dfrac{7}{b}\right)\)

Tương tự: \(\sqrt{2b^2+\dfrac{7}{c^2}}\ge\dfrac{1}{3}\left(2a+\dfrac{7}{c}\right)\) ; \(\sqrt{2c^2+\dfrac{7}{a^2}}\ge\dfrac{1}{3}\left(2c+\dfrac{7}{a}\right)\)

Cộng vế:

\(VT\ge\dfrac{1}{3}\left(2a+2b+2c+\dfrac{7}{a}+\dfrac{7}{b}+\dfrac{7}{c}\right)=2+\dfrac{7}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(VT\ge2+\dfrac{7}{9}.\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) (do \(a+b+c=3\))

\(VT\ge2+\dfrac{7}{9}.\left(\sqrt{a}.\sqrt{\dfrac{1}{a}}+\sqrt{b}.\sqrt{\dfrac{1}{b}}+\sqrt{c}.\sqrt{\dfrac{1}{c}}\right)^2=9\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Đặng Công Minh Nghĩa
Xem chi tiết
Đặng Công Minh Nghĩa
Xem chi tiết
Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Minh Đăng
Xem chi tiết
Đoàn Phương Liên
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
pham trung thanh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết