SS : \(2^0\)+\(2^1\)+\(2^2\) + .....+\(2^{100}\) voi \(2^{101}\)
Tinh tong sau:
N=1^1+2^2+3^3+...+100^100. So sanh N voi 101^102.
\(A=2^0+2^1+2^2+2^3+2^4+...+2^{100}\)
\(B=2^{101}\)
1, cho a^100+b^100=a^101+b^101=a^101+b^101=a^102+b^102.CM a+b/b=a^2+b^2/a^2b^2
2,tính gtbt:A= x/xy+x+1+y/y+1+yz+z/1+z+xz
3, cho a,b,c,d>0 TM:a^2+b^2=1 và a^4/b+c^4/d=1/b+d CM:a^2016/b^1003+c^2006/d^1003=2/(b+d)^1003
Cho ham so
f(x)=4^x/4^x+2
Tinh A=f(0)+f(1/101)+f(2/101)+f(3/101)+...+f(100/101)+f(1)
1 + 2 + 3 + ... + 99 + 100 + 101 . 0
a) 2n-3 chia hết cho n+1 tìm n
b) so sánh
A= 2^0 +2^1 +2^2 +2^3 +.....+2^100 và B= 2^101
So sánh
A=20+21+22+23+...+2100
B=2101
Tính:(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)