\(\sqrt{x}=2\sqrt{2}\Rightarrow x=\left(2\sqrt{2}\right)^2=2^2.\left(\sqrt{2}\right)^2=8\)
\(\sqrt{x}=2\sqrt{2}\Rightarrow x=\left(2\sqrt{2}\right)^2=2^2.\left(\sqrt{2}\right)^2=8\)
\(\left(\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}-2\sqrt{y}}-\frac{2\sqrt{xy}}{x-y}\right).\frac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
RÚT GỌN
Rút gọn : A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}+\frac{3+\sqrt{x}}{\sqrt{x}-2}-\frac{2+\sqrt{x}}{\sqrt{x}-3}\right)\)
1. Tìm x:
a/\(\sqrt{\dfrac{x-1}{x-3}=2}\)
b/\(\sqrt{\left(x-2\right)^2=7}\)
2. Tính:
\(\dfrac{\sqrt{6}+\sqrt{10}}{3+\sqrt{15}}\)
1. Chứng minh:\(\left(\frac{x\sqrt{x}+27y\sqrt{y}}{3\sqrt{x}+9\sqrt{y}}-\sqrt{xy}\right).\left(\frac{3\sqrt{x}+9\sqrt{y}}{9y-x}\right)^2>\sqrt{8}\)
2. Rút gọn A= \(\frac{\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}}{\sqrt{a+\sqrt{2a-1}}-\sqrt{a-\sqrt{2a-1}}}\)
Cho A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}+\frac{3+\sqrt{x}}{\sqrt{x}-2}-\frac{2+\sqrt{x}}{\sqrt{x}-3}\right)\)
Tìm tập xác định và rút gọn A
\(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{...}}}}=2\)
Tìm x
Tìm số nguyên n để các biểu thức dưới đây có giá trị nguyên
a, \(\dfrac{\sqrt{x}-3}{\sqrt{x}-8}\)
b,\(\dfrac{\sqrt{x}+5}{\sqrt{x}-2}\)
\(c,\dfrac{2\sqrt{x}+8}{\sqrt{x}+3}\)
Tìm x thuộc Z
a, \(\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
b, \(\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}\in Z\)
c, \(\frac{2\sqrt{x}+1}{3\sqrt{x}-1}\in Z\)
d, \(\frac{\sqrt{x}-2}{\sqrt{x}+2}\in Z\)
Tìm x,y,z
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(x-\sqrt{2}\right)^2}+\left(x+y+z=0\right)\)
Tìm x
1,\(\sqrt{x}=2\sqrt{2}\)
2,\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)