\(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\cdot\sqrt{x+3}-3\sqrt{x-3}=0\\ \Leftrightarrow\left(\sqrt{x-3}\right)\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
Sửa đề: \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
ĐKXĐ: \(\left\{{}\begin{matrix}x^2-9>=0\\x-3>=0\end{matrix}\right.\)
=>x>=3
\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
=>\(\sqrt{x-3}\cdot\sqrt{x+3}-3\sqrt{x-3}=0\)
=>\(\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=6\left(nhận\right)\end{matrix}\right.\)
ĐKXĐ: x ≥ 3
Phương trình tương đương:
√[(x - 3)(x + 3)] - 3√(x - 3) = 0
⇔ √(x - 3)[√(x + 3) - 3] = 0
⇔ √(x - 3) = 0 hoặc √(x + 3) - 3 = 0
*) √(x - 3) = 0
⇔ x - 3 = 0
⇔ x = 3 (nhận)
*) √(x + 3) - 3 = 0
⇔ √(x + 3) = 3
⇔ x + 3 = 9
⇔ x = 9 - 3
⇔ x = 6 (nhận)
Vậy S = {3; 6}