\(=\dfrac{3\sqrt{x}+9+x-3\sqrt{x}}{\sqrt{x}\left(x-9\right)}\cdot\dfrac{x-9}{\sqrt{x}}=\dfrac{x+9}{x}\)
\(=\dfrac{3\sqrt{x}+9+x-3\sqrt{x}}{\sqrt{x}\left(x-9\right)}\cdot\dfrac{x-9}{\sqrt{x}}=\dfrac{x+9}{x}\)
cho biểu thức B=(1/(sqrt(x) + 3) + (2sqrt(x))/(x - 9) ) 2 sqrt x +6 sqrt x -1 với x >= 0 x ne1;x ne9 a) rút gọn B
Cho biểu thức D = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
với \(x\ne9,x\ge0\)
a) Rút gọn D
b)Tìm x để \(D< \dfrac{-1}{4}\)
Cho các biểu thức sau (giải chi tiết)
A = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\) và B = \(\dfrac{2x+3\sqrt{x}+9}{x-9}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức B
b) Cho \(P=\dfrac{A}{B}\). Tìm GTNN của P
Cho P = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức P. Tính M = P : Q
b) Tìm giá trị nhỏ nhất của biểu thức A = \(x.M+\dfrac{4x+7}{\sqrt{x}+3}\)
Cho các biểu thức sau:
A = \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức \(M=\dfrac{A}{B}\)
b) Tìm GTNN của biểu thức M
B3: Cho:
\(M=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0,x\ne1,x\ne9\)
a, Rút gọn M
b, Tìm x để M \(>\dfrac{3}{4}\)
Cho biểu thức
\(B=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\left(x>0,x\ne9\right)\)
a/ Rút gọn B
b/ CM : B > 1/3
\(B=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x};\left(x\ge0;x\ne9;x\ne16\right)\)
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1};\left(x>0;x\ne1\right)\)
1. rút gọn bt
Q= \(\left(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{36}{x-9}\right):\dfrac{\sqrt{x}-5}{3\sqrt{x}-x}\)
b, tìm để Q<0