\(\sqrt{\left(2x-1\right)^2+4}+3\left|4y^2-1\right|+5=7\)
Tìm x , y
\(\sqrt{\left(2x+1\right)^2+4}+3\left|4y^2-1\right|+5=7\)
tìm giá trị nhỏ nhất: A= \(\sqrt{\left(2x+1\right)^2+4}\)+ 3. l 4y^2 -1l +5
tìm x,y:
\(\sqrt{\left(2x+1\right)^2+4}+3|4y^2-1|+5=7\)
ai làm xong trc mà đúng cho 1 tik
\(2\left|2x-6\right|=\dfrac{5}{6}-\left|x-3\right|\)
2:\(\left|x+2013\right|+\left|x+2014\right|+\left|x+2045\right|=2\)
3:\(\left|2x-1\right|=\left|x+1\right|\)
4:\(\sqrt{\left(x+\sqrt{5}\right)}+\sqrt{\left(y-\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
tìm x biết : x.(x+2/3)-x.(x-3/4)=7/12
b)\(\sqrt{x^2}+1\)=x+2
c)\(\left(2x+1\right)^5\)=\(\left(2x+1\right)^{2019}\)
1. Chứng minh:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+\frac{1}{5\sqrt{4}}+...+\frac{1}{2016\sqrt{2015}}<\frac{88}{45}\)
2. Rút gọn: A= \(\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}+\frac{2x^2}{13-3x^2}\right)\times\frac{24-12x}{6+13x}\)
3, Cho 2x;3y tỉ lệ nghịch với 3,4;x và z tỉ lệ thuận với 4,5; x-2y+3z=1. Tính x-y-z
4. Tìm x: \(\left(2x-3\right)^2-2\left(3x+1\right)^2=2x\left(x-2\right)+\left(x-1\right)\left(x+2\right)\)
Bài 1: Thu gọn đơn thức ( a là hằng só )
a) \(1\dfrac{1}{4}x^2y\left(\dfrac{-5}{6}xy\right)^0.\left(-2\dfrac{1}{3}xy\right)\)
b) \(\dfrac{1}{2}x.\dfrac{1}{4}x^2.\dfrac{x^3}{8}.2y.4y^2.x^3\)
c) \(\left(\dfrac{-9}{2}\right)^3.3xy\left(4a^2x^3\right)\left(4\dfrac{1}{3}ay^2\right)\)
d) \(\left(\dfrac{1}{3}xy^2\right)^3\left(\dfrac{-3}{7}x^4y\right)^2\)
Tìm x biết:
a)\(\left|\sqrt{2}-x\right|=\sqrt{2}\)
b)\(\left|x-1\right|=\sqrt{3}+2\)
c)\(\left|1-2x\right|=\sqrt{5}-1\)
d)\(\left|1-x\right|=\sqrt{2}-0,\left(1\right)\)
e)\(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)
f)\(\left|x-\sqrt{2}\right|=1,\left(4\right)\)