con số 1 : 7 \(\sqrt{2}\)- 10\(\sqrt{2}\)+ 30\(\sqrt{2}\) = 27 \(\sqrt{2}\)
con số 1 : 7 \(\sqrt{2}\)- 10\(\sqrt{2}\)+ 30\(\sqrt{2}\) = 27 \(\sqrt{2}\)
\(A=\left(\sqrt{5}-\sqrt{2}\right)^2-\frac{9}{\sqrt{10}-1}+\sqrt{90}\)\(B=\sqrt{2}\left(3\sqrt{2}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\)\(C=\left(\frac{5-\sqrt{5}}{\sqrt{5}-1}-\frac{\sqrt{5}+1}{5+\sqrt{5}}\right):\frac{\sqrt{5}+1}{\sqrt{5}}\)\(D=\frac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}:\frac{x+2\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)^3\left(x+y\right)}vớix,y>0\)
TÍNH HOẶC RÚT GỌN
rút gọn :
a.\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}vớix>=8\)
b,\(\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}\)
c,\(\frac{\sqrt{x-2\sqrt{x+1}}}{x+2\sqrt{x+1}}\Rightarrow vớix>=0\)
d,\(\frac{x-1}{\sqrt{y-1}}\cdot\sqrt{\frac{\left(y-2\sqrt{y+1}\right)^2}{\left(x-1\right)^4}}\)
35Cho biểu thức
P=\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
a) Rút gọn P
b)Cho xy=16 . Tìm Min P
34 Cho biểu thức
P=\(\frac{x}{\sqrt{xy}-2y}-\frac{2\sqrt{x}}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}-\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn P
b)Tính P biết 2x^2+y^2-4x-2xy+4=0
choa,b,c>0;\(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)1
cmr\(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{xz}{x+z+2y}}\le\frac{1}{2}\)
\(1,\hept{\begin{cases}\sqrt{x}+\sqrt{y}=3\\\sqrt{x+5}+\sqrt{y+3}=5\end{cases}}\)
\(2,\hept{\begin{cases}x\left(x+y+1\right)-3=0\\\left(x+y\right)^2-\frac{5}{x^2}+1=0\end{cases}}\)
\(3,\hept{\begin{cases}xy+x+y=x^2+2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
\(4,\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
\(5,\hept{\begin{cases}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{cases}}\)
Bài 1 :Tinh giá trị của các biểu thức sau :( lấy 05 chữ số thập phân sau dấu phẩy)
a) Tìm x số thực thỏa mãn:
\(\frac{x}{2+\frac{x}{2+\frac{x}{2+\frac{x}{\sqrt{1+x}+1}}}}=2012\)
b)\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
c)\(C=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}\times\frac{1-x}{\left(1-\sqrt{x}\right)\sqrt{y}}\)khi\(x=2,47839;y=\sqrt{7-4\sqrt{3}}\)
Cho xy+yz+xz=2xyz (x,y,z>0). Tìm Max P= \(\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2z^2x^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
Cho xy+yz+zx=2xyz ; x,y,z>0 Tìm max \(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
cho x,y,z>0 vã+y+x=1. ttim GTNN cua A= \(\frac{\sqrt{xy+z}+\sqrt{2x^2}+2y^2}{1+\sqrt{xy}}\)