`\sqrt{6}.\sqrt{3}=\sqrt{6.3}=\sqrt{18}=\sqrt{3^2 .2}=3\sqrt{2}`
\(\sqrt{6}\cdot\sqrt{3}=\sqrt{6\cdot3}=\sqrt{18}=3\sqrt{2}\)
\(\sqrt{6}.\sqrt{3}=\sqrt{6.3}=\sqrt{18}=\sqrt{9.2}=3\sqrt{2}\)
\(=\sqrt{6\times3}=\sqrt{18}=\sqrt{3^2\times2}=3\sqrt{2}.\)
`\sqrt{6}.\sqrt{3}=\sqrt{6.3}=\sqrt{18}=\sqrt{3^2 .2}=3\sqrt{2}`
\(\sqrt{6}\cdot\sqrt{3}=\sqrt{6\cdot3}=\sqrt{18}=3\sqrt{2}\)
\(\sqrt{6}.\sqrt{3}=\sqrt{6.3}=\sqrt{18}=\sqrt{9.2}=3\sqrt{2}\)
\(=\sqrt{6\times3}=\sqrt{18}=\sqrt{3^2\times2}=3\sqrt{2}.\)
Rút gọn biểu thức M= \(\frac{\sqrt{6+2\times\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\times\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
CMR : \(\sqrt[4]{49+20\times\sqrt{6}}+\sqrt[4]{49-20\times\sqrt{6}}=2\times\sqrt{3}\)
\(\left(3\sqrt{5}+2\sqrt{6}+\sqrt{69}\right)\times\left(3\sqrt{5}+2\sqrt{6}-\sqrt{69}\right)\)
Tính
Tính \(\sqrt{2-\sqrt{3}}\times\left(\sqrt{6}-\sqrt{2}\right)\times\left(2+\sqrt{3}\right)\)
rut gon bieu thuc
\(\left(3\sqrt{2}+\sqrt{6}\right)\times\sqrt{6-3\sqrt{3}}\)
thực hiện phép tính:
\(\left(\sqrt{3}-2\right)\times\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
\(\sqrt{\frac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}\times\left(3\sqrt{2}+\sqrt{14}\right)\)
M= (\(\sqrt{6}-\sqrt{3}-1\)1)\(\times\)(\(\sqrt{6}-\sqrt{3}+1\)) +\(\frac{8-\sqrt{128}}{\sqrt{3-2\sqrt{2}}}\)\(+6\sqrt{2}\)
RÚT GỌN BIỂU THỨC SAU
\(D=\left(3\sqrt{2}+\sqrt{6}\right)\times\sqrt{6-3\sqrt{3}}\)
\dfrac{ \sqrt{ y \phantom{\tiny{!}}} -2 }{ \sqrt{ y \phantom{\tiny{!}}} -3 } \times ( \dfrac{ \sqrt{ y \phantom{\tiny{!}}} }{ \sqrt{ y \phantom{\tiny{!}}} -3 } + \dfrac{ 6 \sqrt{ y \phantom{\tiny{!}}} }{ 9-y } - \dfrac{ 3 }{ \sqrt{ y \phantom{\tiny{!}}} +3 } )
Rút gọn biểu thức sau:
\(\sqrt{12+6\sqrt{3}}-\sqrt{3}\)
\(\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\times\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)