\(\sqrt{361=19}\)
\(\sqrt{121^2=121}\)
Vaayj \(\sqrt{361}+\sqrt{121^2=}19+121=140\)
\(\sqrt{361}+\sqrt{121^2}\)
\(=19+121\)
\(=140\)
\(k\)\(nha\)
=140 nhaaa
k nhaa nan ni bn do
\(\sqrt{361}+\sqrt{121^2}=19+\sqrt{165641=19+121=140.}\)
\(\sqrt{361=19}\)
\(\sqrt{121^2=121}\)
Vaayj \(\sqrt{361}+\sqrt{121^2=}19+121=140\)
\(\sqrt{361}+\sqrt{121^2}\)
\(=19+121\)
\(=140\)
\(k\)\(nha\)
=140 nhaaa
k nhaa nan ni bn do
\(\sqrt{361}+\sqrt{121^2}=19+\sqrt{165641=19+121=140.}\)
\(\sqrt{361}+\sqrt{121}+\sqrt{100}=?\)
Sắp xếp từ nhỏ đến lớn:\(\frac{1}{\sqrt{121}};\frac{\sqrt{121}}{\sqrt{12321}};...:\frac{\sqrt{123456787654321}}{\sqrt{12345678987654321}}\)
\(A=\left(\sqrt{0,0289}+\sqrt{0,6889}\right).\left(1349.\sqrt{\frac{361}{5041}}-142.\sqrt{\frac{324}{6241}}\right)\)
Sắp xếp các số sau từ nhỏ đến lớn:\(\frac{1}{121};\frac{\sqrt{121}}{\sqrt{12321}};...;\frac{\sqrt{123456787654321}}{\sqrt{12345678987654321}}\)
tính
A) \(\sqrt{121}-\sqrt{\dfrac{1}{4}}+\sqrt{\dfrac{25}{36}}\)
b) \(\dfrac{3}{4}.\dfrac{-5}{7}-\dfrac{3}{4}.\dfrac{2}{7}\)
\(\sqrt{\frac{16}{36}}+\sqrt{\frac{9}{49}}+\sqrt{\frac{121}{25}}\)
So sánh A và B :
a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
b)
\(A=\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{12321}}+\frac{1}{\sqrt{1234321}}+...+\frac{1}{\sqrt{12345678987654321}}\)
\(B=0,111111111\)
Chứng minh rằng: \(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+......+\(\frac{1}{\sqrt{121}}\)>11
\(\sqrt{\frac{169}{121}+\frac{\sqrt{ }144}{11}}\)