\(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}=\frac{\left(\sqrt[3]{3+2\sqrt{2}}\right)^3+\left(\sqrt[3]{3-2\sqrt{2}}\right)^3}{\left(\sqrt{3+2\sqrt{2}}\right)^2-\sqrt{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}+\left(\sqrt{3-2\sqrt{2}}\right)^2}\)
= \(\frac{6}{3+2\sqrt{2}+3-2\sqrt{2}+\sqrt{9-8}}=\frac{6}{6+1}=\frac{6}{7}\)