So sánh \(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\) và \(B=\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{20}+\sqrt{40}+\sqrt{60}\right)\)
So sánh A và B :
a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
b)
\(A=\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{12321}}+\frac{1}{\sqrt{1234321}}+...+\frac{1}{\sqrt{12345678987654321}}\)
\(B=0,111111111\)
So sánh A và B với:
a) A=\(\sqrt{20+1}\)+\(\sqrt{40+2}\)+\(\sqrt{60+3}\);B = \(\sqrt{1}\)+\(\sqrt{2}\)+\(\sqrt{3}\)+\(\sqrt{20}\)+\(\sqrt{40}\)\(\sqrt{60}\)
b) A= \(\frac{1}{\sqrt{121}}\)+\(\frac{1}{\sqrt{12321}}\)\(\frac{1}{\sqrt{1234321}}\)+...+\(\frac{1}{\sqrt{12345678987654321}}\)
B=0,111111111
So sánh:
a)\(A=\sqrt[]{21}+\sqrt{42}+\sqrt{63}\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
b)\(A=\left(1-\frac{1}{\sqrt{4}}\right)\left(1-\frac{1}{\sqrt{16}}\right)\left(1-\frac{1}{\sqrt{100}}\right)\)
\(B=\sqrt{0,1}\)
c) \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
\(B=10\)
1. Chứng minh:\(\left(\frac{x\sqrt{x}+27y\sqrt{y}}{3\sqrt{x}+9\sqrt{y}}-\sqrt{xy}\right).\left(\frac{3\sqrt{x}+9\sqrt{y}}{9y-x}\right)^2>\sqrt{8}\)
2. Rút gọn A= \(\frac{\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}}{\sqrt{a+\sqrt{2a-1}}-\sqrt{a-\sqrt{2a-1}}}\)
Rút gọn : A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}+\frac{3+\sqrt{x}}{\sqrt{x}-2}-\frac{2+\sqrt{x}}{\sqrt{x}-3}\right)\)
1. Tìm x:
a/\(\sqrt{\dfrac{x-1}{x-3}=2}\)
b/\(\sqrt{\left(x-2\right)^2=7}\)
2. Tính:
\(\dfrac{\sqrt{6}+\sqrt{10}}{3+\sqrt{15}}\)
Cho A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}+\frac{3+\sqrt{x}}{\sqrt{x}-2}-\frac{2+\sqrt{x}}{\sqrt{x}-3}\right)\)
Tìm tập xác định và rút gọn A
Mai tui nộp bài này r, TL hết nha pls
a)\(\sqrt{x=2}\)
b)\(\sqrt{\frac{x}{2}}=3\)
c)\(\sqrt{\frac{x}{2}}=\sqrt{\frac{y}{3}}\)và \(\sqrt{x}-\sqrt{y}=-1\)
d)\(\sqrt{\frac{x-3}{3}}=\sqrt{\frac{y-1-2}{4}}\)và \(\sqrt{x}=\sqrt{y-1}\)