Chứng minh rằng: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{25}\)> 75
Tính: \(P=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{24\sqrt{25}+25\sqrt{24}}\)
a
\(\sqrt{25-3\sqrt{\frac{4}{3}}}\)
b\(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
c\(\left(-2^2\right)+\sqrt{36}.2-\sqrt{9}.3+\sqrt{25}\)
Rút gọn:
\(\frac{1}{\sqrt{1}\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}\sqrt{25}}\)
a,\(\sqrt{49-\sqrt{4+\sqrt{25}}}\)
b,\(\left(\sqrt{100-\sqrt{1}}\right):\sqrt{\left(-3\right)^2}\)
c,\(\sqrt{16+9-\sqrt{25-9}}\)
d,\(\sqrt{\left(-7\right)^2-\sqrt{1^{40}}.\sqrt{16}}\)
Rút gọn:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)
Tính
a) \(2\sqrt{\frac{25}{16}}-3\sqrt{\frac{49}{36}}+4\sqrt{\frac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\frac{1}{2}}\right)^2+\frac{1}{16}.\left(\sqrt{\frac{3}{4}}\right)^2\)
c) \(\frac{2}{3}\sqrt{\frac{81}{16}}-\frac{3}{4}\sqrt{\frac{64}{9}}+\frac{7}{5}.\sqrt{\frac{25}{196}}\)
Tính
1.\(2\sqrt{4}+4\sqrt{9}+6\sqrt{25}-4\sqrt{16}+\sqrt{0}\)
2. \(2\sqrt{0,09}-7\sqrt{2,25}+8\sqrt{\frac{16}{25}}-\sqrt{1}-0\sqrt{10,1}\)
bài 1 tính
a,\(C=3.\sqrt{25}-3.\sqrt{\frac{1}{9}}\)
b,\(D=-4\sqrt{\frac{4}{25}}+3\sqrt{0,16}-2\sqrt{0,04}\)
giúp mik với ~~~