a) A=\(\sqrt{\left(4-\sqrt{15}\right)^2+\sqrt{15}}\)
b) B=\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
c) C=\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
d)D=\(\sqrt{29+12\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
rút gọn
d,\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\) e,\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) f,\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
Rút gọn biểu thức
1)\(\frac{15}{3\sqrt{20}}\)
2) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{2}-\sqrt{5}}\)
3) \(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}\)
4) \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{15}}\)
5) \(\left(\sqrt{20}-\sqrt{45}+\sqrt{5}\right)\sqrt{5}\)
6)\(\left(2+\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2\)
7) \(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
8)\(\frac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\frac{1}{3}}\)
9) \(2\sqrt{3}\left(2\sqrt{6}-\sqrt{3}+1\right)\)
10) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
11) \(\sqrt{\sqrt{10}+1}.\sqrt{\sqrt{10}-1}\)
12) \(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
13) \(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{3}}+\sqrt{\frac{1}{12}}\)
14) \(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}\right)\sqrt{6}\)
15 ) \(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
16) \(\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
17) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
Bài 1: Rút gọn biểu thức
1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\) 2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)
3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\) 4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)
5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\) 6) \(\left(3\sqrt{20}-\sqrt{125}-15\sqrt{\frac{1}{5}}\right).\sqrt{5}\)
7) \(\left(6\sqrt{128}-\frac{3}{5}\sqrt{50}+7\sqrt{8}\right):3\sqrt{2}\) 8) \(\left(2\sqrt{48}-\frac{3}{2}\sqrt{\frac{4}{3}}+\sqrt{27}\right).2\sqrt{3}\)
9) \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{8}-4\right)^2}\) 10) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)
11) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\) 12) \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
13) \(\sqrt{15-6\sqrt{6}}\) 14) \(\sqrt{8-2\sqrt{15}}\) 15) \(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)
\(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
Bài 1 Rút gọn
a) \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}\)
b) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
c) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
Bài 2: Cho 2 đường thẳng (d): y = -x - 4 và (d₁): y = 3x + 2.
a) Vẽ đồ thị (d) và (d₁) trên cùng một mặt phẳng tọa độ Oxy.
b) Xác định tọa điểm A của 2 đường thẳng trên.
c) Viết pt đường thẳng: (d₂): y = ax + b (a≠0) song song vs đường thẳng (d) và đi qua điểm B(-2;5)
Tính:
1) \(\sqrt{14-2\sqrt{33}}\)
2) \(\sqrt{12-2\sqrt{35}}\)
3) \(\sqrt{16-2\sqrt{55}}\)
4) \(\sqrt{14-6\sqrt{5}}\)
5) \(\sqrt{17-12\sqrt{2}}\)
6) \(\sqrt{27-12\sqrt{5}}\)
7) \(\sqrt{4+\sqrt{15}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
Thực hiện từng bước của phép tính:
1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
Bài 1: Thực hiện phép tính
1) A= \(\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}\)
2) A= \(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
3) \(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}}\)
4) B= 5(\(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\))2 + ( \(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\))2
5) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)