đặt \(A=\sqrt{2}+\sqrt{6}+\sqrt{20}+\sqrt{12}=\sqrt{1}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{4}+\sqrt{4}.\sqrt{5}\)
áp dụng bất đẳng thức cosi cho các cặp số dương ta có
\(A< \frac{1+2+2+3+3+4+4+5}{2}=12\) do dấu bằng không xảy ra.
hay nói A<12
??? Cosi :v \(\sqrt{2}+\sqrt{6}+\sqrt{20}+\sqrt{12}< \sqrt{2,25}+\sqrt{6,25}+\sqrt{12,25}+\sqrt{20,25}\)
\(=1,5+2,5+3,5+4,5=12\)