\(\sqrt{19}+\sqrt{21}=\sqrt{\left(\sqrt{19}+\sqrt{21}\right)^2}=\sqrt{40+2\sqrt{19\cdot21}}=\sqrt{40+2\sqrt{\left(20-1\right)\left(20+1\right)}}=\sqrt{40+2\sqrt{20^2-1}}< \sqrt{40+2\sqrt{20^2}}=\sqrt{80}=2\sqrt{20}\)
\(\sqrt{19}+\sqrt{21}=\sqrt{\left(\sqrt{19}+\sqrt{21}\right)^2}=\sqrt{40+2\sqrt{19\cdot21}}=\sqrt{40+2\sqrt{\left(20-1\right)\left(20+1\right)}}=\sqrt{40+2\sqrt{20^2-1}}< \sqrt{40+2\sqrt{20^2}}=\sqrt{80}=2\sqrt{20}\)
So sánh A=\(2\sqrt{1}\)+\(2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}+2\sqrt{21}với\)
B=\(\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{20}+\sqrt{22}\)
Cho A= \(2\sqrt{1}+2\sqrt{3}+...+2\sqrt{19}\) và B=\(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{18}+\sqrt{20}\)
So sánh A và B
Cho \(A=2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2.\sqrt{19}\)
và \(B=2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{18}+\sqrt{20}\)
So sánh A và B
Cho \(A=2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}\)
và \(B=2\sqrt{2}+2\sqrt{4}+2.\sqrt{6}+....+2.\sqrt{18}+\sqrt{20}\)
So sánh A và B
So sánh:
1) \(\sqrt{20}-\sqrt{19}\) và \(\sqrt{21}-\sqrt{20}\)
2) \(3\sqrt{5}\)và \(5\sqrt{3}\)
3) \(\sqrt{a}+\sqrt{b}\)và \(\sqrt{a+b}\)
4) \(\sqrt{12}+\sqrt{14}\)và \(2\sqrt{13}\)
5) \(\sqrt{2019}-\sqrt{2020}\)và \(\sqrt{2020}-\sqrt{2021}\)
các bạn giải cho mình bài toán này với so sánh: A=\(2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+.......+2\sqrt{19}\)và B= \(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+....+2\sqrt{18}+\sqrt{20}\)
so sánh
a. \(\sqrt{7}+\sqrt{15}và7\)
b.\(\sqrt{21}-\sqrt{5}và\sqrt{20}-\sqrt{6}\)
So sánh:
\(A=2\sqrt{1}+2\sqrt{3}+...+2\sqrt{19}\)
\(B=2\sqrt{2}+2\sqrt{4}+...+2\sqrt{18}+\sqrt{20}\)
so sánh các số sau:
\(A=2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}\)
\(\text{Và }B=2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{20}\)