\(\frac{n}{n+2}và\frac{n+3}{n+5}\)
Có\(\frac{n}{n+2}=\frac{\left(n+2\right)-2}{n+2}=1-\frac{2}{n+2}\)
\(\frac{n+3}{n+5}=\frac{\left(n+5\right)-2}{n+5}=1-\frac{2}{n+5}\)
Vì\(\frac{2}{n+2}>\frac{2}{n+5}\)
\(=>1-\frac{2}{n+2}< 1-\frac{2}{n+5}\)
\(=>\frac{n}{n+2}< \frac{n+3}{n+5}\)