Vì\(\left(\frac{1}{16}\right)^{10}\)= \(\left[\left(\frac{1}{2}\right)^4\right]^{10}\)= \(\left(\frac{1}{2}\right)^{40}\)
Mà 40<50 =>\(\left(\frac{1}{2}\right)^{40}\)< \(\left(\frac{1}{2}\right)^{50}\)hay \(\left(\frac{1}{16}\right)^{10}\)< \(\left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}\)<\(\left(\frac{1}{2}\right)^{50}\)
Học giỏi!^^ (đúng thì k cho mik nhé,cảm ơn!)
\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
Ta có\(\frac{1}{16}>\frac{1}{32}\)nên\(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)hay\(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có:
\(16^{10}=\left(2^4\right)^{10}=2^{4\cdot10}=2^{40}< 2^{50}\)
=>\(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Vậy ......
ta có
(1/2)^50=(1^5/2^5)^10=(1/32)^10
từ đó ta so sánh (1/16)^10và (1/32)^10 ta thấy 1/16>1/32 nên=>(1/16)^10>(1/32)^10
hay (1/16)^10>(1/2)^50
vậy (1/16)^10>(1/2)^50
\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\frac{1}{32}^{10}\)
\(\Rightarrow\frac{1}{16}>\frac{1}{32}\)Nên \(\frac{1}{16}^{10}>\frac{1}{32}^{10}\)
\(\Rightarrow\)Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
1 / 6 10 và 1 / 2 5 . 10
1 / 6 10 và ( 1 / 2 5 ) 10
1 / 6 10 và 1 / 4 10
=> 1 / 6 10 > 1 / 4 10