Ta có :
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}\)
\(\frac{n+1}{n+3}>\frac{n}{n+3}\)
\(\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
Vậy \(\frac{n+1}{n+2}>\frac{n}{n+3}.\)
Có \(\frac{n}{n+3}=\frac{n+1}{n+3+1}=\frac{n+1}{n+4}\)
ta thấy n+2 < n+4
=> \(\frac{n+1}{n+2}>\frac{n+1}{n+4}=>\frac{n+1}{n+2}>\frac{n}{n+3}\)
Ta có:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}\)
\(\frac{n+1}{n+3}>\frac{n}{n+3}\)
\(\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
Vậy: \(\frac{n+1}{n+2}>\frac{n}{n+3}\)