Ta có :
\(\frac{n-2013}{n-2014}=1-\frac{2013}{2014}=\frac{1}{2014}\)
\(\frac{n-2014}{n-2015}=1-\frac{2014}{2015}=\frac{1}{2015}\)
Vì \(\frac{1}{2014}>\frac{1}{2015}\Rightarrow\frac{n-2013}{n-2014}<\frac{n-2014}{n-2015}\)
\(\frac{n-2013}{n-2014}<\frac{n-2014}{n-2015}\)