\(\frac{100^{2015}+1}{100^{2015}+1}=1\)
\(\frac{100^{2016}+1}{100^{2016}+1}=1\)
Vì 1 = 1 nên \(\frac{100^{2015}+1}{100^{2015}+1}=\frac{100^{2016}+1}{100^{2016}+1}\)
à mình nhìn nhầm đề
Mình giải nha
Đặt \(A=\frac{100^{2015}+1}{100^{2005}+1}\Rightarrow\frac{A}{100^{10}}=\frac{100^{2015}+1}{100^{2015}+100^{10}}=\frac{100^{2015}+100^{10}-999}{100^{2015}+100^{10}}=1-\frac{999}{100^{2015}+100^{10}}\)
Đặt \(B=\frac{100^{2016}+1}{100^{2006}+1}\Rightarrow\frac{B}{100^{10}}=\frac{100^{2016}+100^{10}-999}{100^{2016}+100^{10}}=1-\frac{999}{100^{2016}+100^{10}}\)
\(1-\frac{999}{100^{2015}+100^{10}}< 1-\frac{999}{100^{2016}+100^{10}}\Rightarrow A< B\)
Rõ ràng\(\frac{100^{2016}+1}{100^{2006}+1}\)<1 nên theo tính chất khi \(\frac{a}{b}\)< 1 => \(\frac{a}{b}\)<\(\frac{a+m}{b+m}\) => \(\frac{100^{2016}+1}{100^{2006}+1}\)<\(\frac{100^{2016}+1+99}{100^{2006}+1+99}\)
<\(\frac{100^{2016}+100}{100^{2006}+100}\)
=>\(\frac{100^{2016}+1}{100^{2006}+1}\)< \(\frac{100^{2016}+100}{100^{2006}+100}\) = \(\frac{100\left(100^{2015}+1\right)}{100\left(100^{2005}+1\right)}\)= \(\frac{\left(100^{2015}+1\right)}{\left(100^{2005}+1\right)}\)
Vậy\(\frac{100^{2016}+1}{100^{2006}+1}\) < \(\frac{\left(100^{2015}+1\right)}{\left(100^{2005}+1\right)}\)
Ninh Thế Quang Nhật sai rồi, \(^{100^{10\ne}999+1}\)