Ta có
-2015.2017>-2016.2016(4064255>4064256)
=>-2015/2016>-2016/2017
Ta có
-2015.2017>-2016.2016(4064255>4064256)
=>-2015/2016>-2016/2017
so sanh\(\frac{-2015}{-2016}va\frac{-2016}{-2017}\)
So Sanh Hai Phan So Sau:
\(A=\frac{2014}{2015}-\frac{2015}{2016}+\frac{2016}{2017}-\frac{2017}{2018}\) VA \(B=-\frac{1}{2014.2015}-\frac{1}{2016.2017}\)
so sanh
\(\frac{2016+2017}{2017+2018}\) va \(\frac{2016}{2017}\)+ \(\frac{2017}{2018}\)
So sánh M và N biết:
M=\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
N=\(\frac{2014+2015+2016}{2015+2016+2017}\)
cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2016}+\frac{1}{2017}\)
va B=\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+......+\frac{2}{2015}+\frac{1}{2016}\)
Tinh ti so \(\frac{A}{B}\)
so sanh: A= 2016^1016+1 phân 2016^2017+1 và B= 2016^2015+1 phần 2016^2016+1
So sánh \(A=\frac{2016}{a^m}+\frac{2016}{a^n}vaB=\frac{2017}{a^m}\frac{2015}{a^n}\)
So sánh x và y biết : \(x=\frac{2016^{2017}+1}{2016^{2016}+1}\) và \(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)
\(B=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)