\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\sqrt{2007}+\sqrt{2006}}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vì \(\sqrt{2006}+\sqrt{2005}< \sqrt{2007}+\sqrt{2006}\)
Nên \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vậy \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)