\(A=\frac{2}{60\cdot63}+\frac{2}{63\cdot66}+...+\frac{2}{117\cdot120}+\frac{2}{2003}\)
\(\text{Đặt }C=\frac{2}{60\cdot63}+\frac{2}{63\cdot66}+...+\frac{2}{117\cdot120}\)
\(C=\frac{2}{3}\left(\frac{3}{60\cdot63}+\frac{3}{63\cdot66}+...+\frac{3}{117\cdot120}\right)\)
\(C=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)\)
\(C=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{120}\right)\)
\(C=\frac{2}{3}\cdot\frac{1}{120}\)
\(C=\frac{1}{180}\)
\(\text{Thay }C=\frac{1}{180}\text{Ta có : }\) \(A=\frac{1}{180}+\frac{2}{2003}\)
\(B=\frac{5}{40\cdot44}+\frac{5}{44\cdot48}+...+\frac{5}{76\cdot80}+\frac{5}{2003}\)
\(\text{Đặt }D=\frac{5}{40\cdot44}+\frac{5}{44\cdot48}+...+\frac{5}{76\cdot80}\)
\(D=\frac{5}{4}\left(\frac{4}{40\cdot44}+\frac{4}{44\cdot48}+...+\frac{4}{76\cdot80}\right)\)
\(D=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)\)
\(D=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)\)
\(D=\frac{5}{4}\cdot\frac{1}{80}\)
\(D=\frac{1}{64}\)
\(\text{Thay }D=\frac{1}{64}\text{ Ta có : }B=\frac{1}{64}+\frac{5}{2003}\)
\(\text{Vì }A=\frac{1}{180}+\frac{2}{2003}\text{ , }B=\frac{1}{64}+\frac{5}{2003}\)
\(\text{Có : }\frac{1}{180}< \frac{1}{64}\)
\(\frac{2}{2003}< \frac{5}{2003}\)
\(\Rightarrow\text{ }A< B\)
A=2/3.(3/60.63+3/63.66+.....+3/117.120+3/120.123)
A=2/3.(1/60-1/63+1/63-1/66+...+1/117-1/120+1/20-1/123)
A=2/3.(1/60-1/123)