\(A=\frac{115^{17}+2}{115^{17}-1}=\frac{115^{17}}{115^{17}-\left(2+1\right)}=\frac{115^{17}}{115^{17}-3}\)
\(\Rightarrow A=B\)
Ta có :
A = \(\frac{115^{17}+2}{115^{17}-1}\)= \(\frac{115^{17}-1+3}{115^{17}-1}\)= 1 + \(\frac{3}{115^{17}-1}\)
B = \(\frac{115^{17}}{115^{17}-3}\)= \(\frac{115^{17}-3+3}{115^{17}-3}\)= 1 + \(\frac{3}{115^{17}-3}\)
Vì 11517 - 1 > 11517 - 3 nên \(\frac{3}{115^{17}-3}\) < \(\frac{3}{115^{17}-1}\)
Vậy :1 + \(\frac{3}{115^{17}-1}\) < 1 + \(\frac{3}{115^{17}-3}\) hay A < B