Cho A= \(2\sqrt{1}+2\sqrt{3}+...+2\sqrt{19}\) và B=\(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{18}+\sqrt{20}\)
So sánh A và B
Cho \(A=2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2.\sqrt{19}\)
và \(B=2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{18}+\sqrt{20}\)
So sánh A và B
Cho \(A=2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}\)
và \(B=2\sqrt{2}+2\sqrt{4}+2.\sqrt{6}+....+2.\sqrt{18}+\sqrt{20}\)
So sánh A và B
các bạn giải cho mình bài toán này với so sánh: A=\(2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+.......+2\sqrt{19}\)và B= \(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+....+2\sqrt{18}+\sqrt{20}\)
So sánh A=\(2\sqrt{1}\)+\(2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}+2\sqrt{21}với\)
B=\(\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{20}+\sqrt{22}\)
so sánh các số sau:
\(A=2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}\)
\(\text{Và }B=2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{20}\)
rút gọn
A=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+........+\frac{1}{\sqrt{19}+\sqrt{20}}\)
B=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+......+\frac{1}{20\sqrt{19}+19\sqrt{20}}\)
M=\(\frac{1+ab}{a+b}-\frac{1-ab}{a-b}\)
với a=\(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b=\(\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Tính M
rút gọn
a)\(\sqrt{20}\)+\(\sqrt{80}\)-\(\sqrt{45}\)
b)4.\(\sqrt{\dfrac{2}{9}}\)+\(\sqrt{2}\)+\(\sqrt{\dfrac{1}{18}}\)
c)\(\dfrac{1}{\sqrt{3}-1}\)-\(\dfrac{1}{\sqrt{3}+1}\)
d)\(\dfrac{1}{\sqrt{x}-1}\)-\(\dfrac{1}{\sqrt{x}+1}\)+1
e)\(\sqrt{x}\)-2+\(\dfrac{10-x}{\sqrt{x}+2}\)
g)\(\dfrac{1}{\sqrt{x}+2}\)-\(\dfrac{2}{\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}}{4-x}\)