a) \(5^{36}=\left(5^3\right)^{12}\)
\(11^{24}=\left(11^2\right)^{12}\)
\(5^3=125>11^2=121\)
b) \(3^{2n}=\left(3^2\right)^n\)
\(2^{3n}=\left(2^3\right)^n\)
\(3^2>2^3\)
a)(5^3)^12=15^12 ; (11^2)^12=22^12 vì 15<22 nên 15^12<22^12 =>5^36<11^24
còn câu b để mk xem đã r giúp bn sau
\(a,5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125>121\Rightarrow125^{12}>121^{12}\)
Hay \(5^{36}>11^{24}\)
b, \(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
Vì \(9>8\Rightarrow9^n>8^n\) với \(n\in Z\)
Hay \(3^{2n}>2^{3n}\)
a/ 5^36=5^3.12= (5^3)^12=125^12
11^24=11^2.12=(11^2)^12=121^12
Vì 125> 121 nên=> 125^12>121^12
Vậy 5^36>11^24