\(199^{20}\)và\(2003^{15}\)
Ta có:
\(199^{20}< 200^{20}\Leftrightarrow200^{20}=\left(2^3\cdot5^2\right)^{20}=2^{60}\cdot5^{40}\)
\(2003^{15}>2000^{15}\Leftrightarrow2000^{15}=\left(2\cdot10^3\right)^{15}=\left(2^4\cdot5^3\right)^{15}=2^{60}\cdot5^{45}\)
\(\Rightarrow199^{20}< 2003^{15}\)