S= 2x(1/1x2+1/2x3+1/3x4+...........+1/2020x2021)
S=2x(1-1/2+1/2-1/3+1/3-...+1/2020-1/2021)
S=2x(1-1/2021)
S=2x2020/2021
S=4040/2021
2019/2010<3/2<4040/2021
=>2019/2010<S
S = 2 x (\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\)\(\frac{2}{2020\times2021}\))
= 2 x (\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\)\(\frac{1}{2020\times2021}\))
= 2 x ( \(1-\frac{1}{2021}\))
= \(2\times\frac{2020}{2021}\)
= \(\frac{4040}{2021}\)
= \(\frac{4042-2}{2021}\)
\(=2-\frac{2}{2021}\)
Ta có :
\(\frac{2019}{2010}=\frac{2020-1}{2010}=2-\frac{1}{2010}=2-\frac{2}{2020}\)
Ta thấy \(\frac{2}{2021}< \frac{2}{2020}\)
nên \(2-\frac{2}{2021}>2-\frac{2}{2020}\)
Vậy \(S\)\(>\frac{2019}{2010}\)