S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2010.2011.2012}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)
=\(\frac{1}{2}-\frac{1}{2011.2012}< \frac{1}{2}\)(Vì \(\frac{1}{2011.2012}>0\))
=> S <\(\frac{1}{2}\)
\(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{2010.2011.2012}\)
\(S=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2012-2010}{2010.2011.2012}\)
\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)
\(S=\frac{1}{1.2}-\frac{1}{2011.2012}=\frac{2023065}{4046132}\)
\(\text{Vì}\)\(\frac{2023065}{4046132}< \frac{1}{2}\Rightarrow S< P\)