Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Châu Anh

So sánh ps : 2017^99 + 1/2017^100 + 1 và 2017^100 + 1/2017^101 + 1

Nguyễn Huy Tú
26 tháng 5 2017 lúc 20:27

Ta có: \(A=\frac{2017^{99}+1}{2017^{100}+1}\Rightarrow2017A=\frac{2017^{100}+2017}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\Rightarrow2017B=\frac{2017^{101}+2017}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

\(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

\(\Rightarrow2017A>2017B\Rightarrow A>B\)

Vậy...

Kaori Miyazono
26 tháng 5 2017 lúc 20:27

Đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)nên \(2017A=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\)nên \(2017B=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

Vì \(1=1;\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

Hay \(2017A>2017B\)nên \(A>B\)

Vây \(\frac{2017^{99}+1}{2017^{1001}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)

Thanh Tùng DZ
26 tháng 5 2017 lúc 20:29

đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)\(B=\frac{2017^{100}+1}{2017^{101}+1}\)

Ta có : \(2017A=\frac{2017.\left(2017^{99}+1\right)}{2017^{100}+1}=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(2017B=\frac{2017.\left(2017^{100}+1\right)}{2017^{101}+1}=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

Vì \(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\Leftrightarrow10A>10B\Rightarrow A>B\)


Các câu hỏi tương tự
pham duc anh
Xem chi tiết
le hoang
Xem chi tiết
Huycopper
Xem chi tiết
Đàm Đức Công
Xem chi tiết
Lê Minh Tiểu Phượng
Xem chi tiết
Nguyễn Thùy Dung
Xem chi tiết
Nguyễn Minh Nhật
Xem chi tiết
Đoàn Phương Anh
Xem chi tiết
Đặng Thị Diệu Thảo
Xem chi tiết