Giải
Ta có : \(\frac{n+2}{n}=\frac{n}{n}+\frac{2}{n}=1+\frac{2}{n}\)
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Vì \(\frac{2}{n}>\frac{2}{n+1}\) nên \(1+\frac{2}{n+1}< 1+\frac{2}{n}\)
Vậy \(\frac{n+2}{n}>\frac{n+3}{n+1}\)